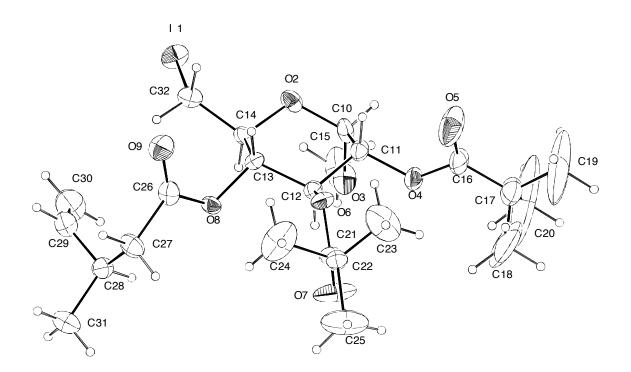
Supporting Information Available.


Preparation of 5aR: The following reaction was carried out under Ar. To a cold (–78 °C) solution of CuBr·Me₂S (251 mg, 1.22 mmol) in THF-Me₂S (2:1) (3 mL) was added vinylmagnesium bromide (1.04 M solution in THF, 2.30 mL, 2.39 mmol). The solution was stirred for 1h at -78 °C, and a solution of **2a** (101 mg, 0.24 mmol) in THF (1 mL) was The solution was stirred for 10 min at -78 °C and guenched with saturated added. aqueous NH₄Cl. After stirring for 10 min, the solution was diluted with EtOAc (30 mL) and washed with saturated aqueous NH₄Cl (5 mL × 5). The organic layer was dried and The residue was purified by column chromatography on silica gel concentrated. (EtOAc/hexane, 1:16) to give 96 mg (90%, d.r. = >99:1) of **5aR** as a colorless oil: TLC, Rf 0.69 (EtOAc/hexane=1:2); $[\alpha]^{25.5}D + 8.0^{\circ}$ (c 1.15, CHCl₃); IR (neat) 2940, 1740, 1640, 1500 cm⁻¹; ¹H NMR (300 MHz) δ 1.01 (d, J = 6.8 Hz, 3H), 2.24 (d, J = 6.3 Hz, 3H), 2.13 (dd, J = 7.3, 15.4 Hz, 1H), 2.25 (dd, J = 7.0, 15.4 Hz, 1H), 2.56-2.68 (m, 1H), 3.38 (s, 3H),3.57 (dd, J = 3.7, 9.5 Hz, 1H), 3.69-3.79 (m, 1H), 3.87 (t, J = 9.4 Hz, 1H), 4.53 (d, J = 3.7Hz, 1H), 4.62, 4.66 (2d, J = 3.5 Hz, 1H \times 2), 4.77 (t, J = 9.7 Hz, 1H), 4.77 (d, J = 12.2 Hz, 1H), 4.86-5.02 (m, 3H), 5.73 (ddd, J = 6.7, 10.4, 17.3 Hz, 1H), 7.23-7.31 (m, 10H), 13 C NMR (75 MHz) δ17.45, 19.64, 33.87, 47.11, 55.25, 65.32, 73.40, 74.98, 75.14, 78.97, 79.90, 98.06, 113.44, 127.45, 127.63 \times 2, 127.93, 128.13 \times 2, 128.26 \times 2, 128.44 \times 2, 137.98, 138.65, 142.27, 171.34; Anal. Calcd for C₂₇H₃₄O₆: C, 71.34; H, 7.54. Found: C, 71.32; H, 7.55.

Hydrolysis of 5aR: A solution of 5aR (81 mg, 0.18 mmol) in MeOH-4M aq. KOH (1:1) (2 mL) was refluxed for 6 h. After completion of the reaction (as assessed by TLC

monitoring), the colution was ecoled to reem temperature and diluted with water (E.ml.)

The entire solution was extracted with CHCl₃ (5 mL \times 5), and the combined extracts were dried and concentrated to give 60 mg (94%) of **13**. The pH of the aqueous layer was adjusted to pH 2 by adding 1M aq. HCl, this was then extracted with CHCl₃ (5 mL \times 5). The combined extracts were dried and concentrated to give 19.5 mg (96%) of **12** as a colorless oil: TLC, Rf 0.25 (EtOAc/hexane=1:1); [α]^{30.0}D -17.4° (c 0.58, CHCl₃); lit. [α]²⁴D -17.42° (c 2.06, CHCl₃); IR (neat) 3400-2800 (br), 2680, 1710, 1600, 1580 cm⁻¹; ¹H NMR (300 MHz) δ 1.09 (d, J = 6.6 Hz, 3H), 2.31 (dd, J = 7.6, 15.1 Hz, 1H), 2.42 (dd, J = 7.1, 15.1 Hz, 1H), 2.62-2.76 (m, 1 H), 4.97-5.09 (m, 2H), 5.79 (ddd, J = 6.8, 10.3, 17.1 Hz); ¹³C NMR (75 MHz) δ 19.04, 34.07, 41.01, 113.57, 142.09, 178.86.

ORTEP Drawing of 4bR.

